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Abstract. In this paper, we shall show that a class of solutions to the discrete coupled matrix
nonlinear Schrödinger equation (DCMNLSE) is gauge equivalent to the discrete equation of the
Schrödinger flow of maps into the Grassmannian and the realizing gauge transformation is only
the discretization of a classical gauge transformation between the matrix nonlinear Schrödinger
equation (MNLSE) and the Schrödinger flow of maps into the Grassmannian. In other words, from
the viewpoint of gauge equivalence, a class of solutions of the DCMNLSE is a correct discretization
of the MNLSE.

1. Introduction

The nonlinear Schrödinger equation (NLSE), iψt + ψxx + 2κ|ψ |2ψ = 0, where the subscripts
denote partial derivatives and κ is a real constant, arises in physics from a variety of
backgrounds, such as in plasma physics and nonlinear optics, and provides a fairly universal
model of a nonlinear equation. The following interesting generalization of the NLSE:

iqt + qxx + 2qq∗q = 0 (1)

was first studied by Fordy and Kulish in [1], where q is a map from R2 to the space M(m−k)×k

of (m − k) × k complex matrices, 1 � k � m − 1 and q∗ denotes the complex transposed
conjugate matrix of q. We will follow [2] by calling this equation, in this paper, the matrix
nonlinear Schrödinger equation (MNLSE) when k � 2 or m− k � 2. Note that if q is a 1 × 1
complex matrix, (1) is just the NLSE equation with κ = 1 (NLSE+). The MNLSE is also
applied in many fields. For example, when q is a 1 × 2 complex matrix, the corresponding
equation (1) is called the 2-vector or 2-component NLSE, which is very useful in nonlinear fibre
communications (see [3]). A systematic study of the 2-vector NLSE can be found in [4–6].

On the other hand, the study of nonlinear integrable differential-difference equations
has received considerable attention in recent years (see, e.g., [7, 8]). The integrable discrete
nonlinear Schrödinger equation (DNLSE) i(dqn/dt)+(qn+1+qn−1−2qn)+κ|qn|2(qn+1+qn−1) =
0 was introduced by Ablowitz and Ladik [9] who constructed the discrete version of the AKNS
system. The DNLSE also has a rather wide area of application; see, e.g., [10] for a listing of
its physical applications. The parallel generalization of the DNLSE+ to that of the NLSE+ is
naturally introduced as follows:

i(dqn/dt) + (qn+1 + qn−1 − 2qn) + (qn+1q
∗
nqn + qnq

∗
nqn−1) = 0 (2)

which is called the discrete-matrix nonlinear Schrödinger equation (DMNLSE).
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The concept of gauge equivalence between completely integrable equations was
introduced in [11, 12] and then became an important tool in the study of solitons [13]. From
a recent work due to the author [14], we know that the NLSE for κ = 1, 0 and −1 is exactly
gauge equivalent to the Schrödinger flow of maps into the Euclidean 2-space S2 ↪→ R3 (with
Gauss curvature 1) (i.e. the HF model) [12], the complex plane C (with Gauss curvature 0)
and the hyperbolic 2-space H 2 ↪→ R2+1 (with Gauss curvature −1) (the M-HF model) [14],
respectively. This gives a beautiful unified geometric explanation for the NLSE. Analogous
results for the (2+1)-dimensional case can be found in [15,16]. The MNLSE (1) is now shown
to be gauge equivalent to the Schrödinger flow of maps into the Grassmannian Gk,m from the
recent results due to Langer and Perline [17] and Terng and Uhlenbeck [2]. The corresponding
results for G1,2 = CP 1 = S2 is exactly the case described in [12] or [14]. However, generally
speaking, in classical integrable theory we have a number of remarkable properties which may
not exist in their discrete counterparts. But, in 1982, Ishimori showed in [18] that the DNLSE+

is gauge equivalent to the discrete HF model (DHF), which reads

dSn/dt = − 2Sn+1 × Sn

1 + Sn+1 · Sn

+
2Sn × Sn−1

1 + Sn · Sn−1
(3)

where Sn = (s1
n, s

2
n, s

3
n) ∈ R3 with |Sn|2 = (s1

n)
2 + (s2

n)
2 + (s3

n)
2 = 1, with · and × denoting the

inner and the cross product inR3. Furthermore, by finding the new Lax pairs, the author proved
in [19] that the DNLSE−, i.e. the DNLSE with κ = −1, (resp. DNLSE+) is gauge equivalent
to the DM-HF (resp. DHF) and, meanwhile, the continuous limit of the realizing gauge
transformations is just a classical limit between the NLSE− (resp. NLSE+) and the M-HF model
(resp. HF model). This reveals that there is a reconciliation of the gauge equivalent structures of
the DNLSE and the NLSE for κ = 1 and −1. It should be pointed out that the Ishimori’s gauge
transformation in [18] is not the discretization of a classical gauge transformation between the
NLSE+ and the HF model (see [19]). After a thorough understanding of the gauge equivalent
structures of the NLSE, the DNLSE (which is the discrete gauge equivalent corresponding to the
NLSE) and the MNLSE, one would like naturally to see the discrete counterpart of the gauge
equivalent structure of the MNLSE according to the correspondence principle in quantum
dynamics. Originally formulated by Bohr, the correspondence principle, which states that
a new (physical) theory must explain all phenomena that the older, superseded theory could
explain, was initially used to describe the relationship between quantum theory and classical
physics. During the early days of quantum theory, physicists used the correspondence principle
to formulate their theories so that in situations where classical physics is valid, their theories
describing quantum phenomena reduced to the same equations obtained from classical physics.
The correspondence principle is valid for many areas of quantum theory, and also applies to
other theories.

In this paper, we shall show that a class of solutions to the following (integrable) discrete
coupled matrix nonlinear Schrödinger equation (DCMNLSE):{

i(dqn/dt) + (qn+1 + qn−1 − 2qn) + (qn+1rnqn + qnrnqn−1) = 0

−i(drn/dt) + (rn+1 + rn−1 − 2rn) + (rn+1qnrn + rnqnrn−1) = 0
(4)

which is the discretization of the (integrable) coupled matrix nonlinear Schrödinger equation
(CMNLSE) {

iqt + qxx + 2qrq = 0

−irt + rxx + 2rqr = 0
(5)

is gauge equivalent to the discrete equation of the Schrödinger flow of maps into the
Grassmannian Gk,m (see equation (11) in the next section), and the continuous limit of
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the realizing gauge transformation is exactly a classical gauge transformation between the
MNLSE (1) and the Schrödinger flow of maps into the Grassmannian Gk,m, where qn is a
map from R2 to the space M(m−k)×k of (m − k) × k complex matrices and rn is a map to the
space Mk×(m−k) of k × (m − k) complex matrices. When rn = q∗

n , equation (4) reduces to
equation (2). This reflects that, from the viewpoint of gauge equivalence, a class of solutions
to the DCMNLSE (4) is a discretization of the MNLSE (1) such that it corresponds to the
discrete gauge equivalent counterpart of the MNLSE.

This paper is organized as follows. In section 2 we present the desired Lax pairs for the
DCMNLSE and the discrete equation of the Schrödinger flow of maps into the Grassmannian.
In section 3 we show the main result of this paper and in section 4 we give an example to
illustrate the result.

2. Lax pairs and their continuous limits

Similar to the Lax pairs for the DNLSE+ and DHF in [19], in this section we shall present Lax
pairs for the DCMNLSE and the discrete equation of the Schrödinger flow of maps into the
Grassmannian such that they are exactly the discretizations of their corresponding classical
Lax pairs.

In order to solve the DCMNLSE (4), we usually need to add the zero-boundary conditions
qn → 0 and rn → 0 as n → ∞. Following the conventional terminology (see [13]), we also
set the zero-boundary condition to be a rapidly decreasing boundary condition. Equation (4)
allows a Lax pair as follows:

φn+1 = Lnφn dφn/dt = Mnφn (6)

with

Ln =
(

zIk rnz
−1

−qnz z−1Im−k

)

Mn = i

(
(1 − z2 + z − z−1)Ik − rnqn−1 −rn + rn−1z

−2

−qn + qn−1z
2 (−1 + z−2 + z − z−1)Im−k + qnrn−1

)
where z is a spectral parameter. In fact, one may verify that the compatibility condition

dLn/dt + LnMn − Mn+1Ln = 0 (7)

of (6) yields only (4).
As usual (see, e.g., [9, 19]), the continuous limit (�x → 0; �x being the discretization

parameter) of the Lax pair (6) is

φx = Lφ φt = Mφ (8)

with

L = λσ3 + U M = −i2λ2σ3 − 2iλU + i(U 2 + Ux)σ3 (9)

and U =
(

0 r

−q 0

)
, after the substitution

z → 1 + λ�x qn → q�x rn → r�x n�x = x(fixed) t�x2 → t (10)

(λ is a parameter) and setting φn ∼ φ, expanding qn±1 ∼ �x(q ± �xqx + �x2

2 qxx ± · · ·), etc.
It can be directly verified that the integrability condition of (8) yields simply the CMNLSE (5)
and if r = q∗, then (5) reduces to the MNLSE (1). One may refer to [20] for a study of
equation (5) in the case of k = 1,m = 2 and its physical applications.
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The following differential-difference equation:

dSn/dt = 4i(I + SnSn−1)
−1 − 4i(I + Sn+1Sn)

−1 (11)

is the discrete equation of the Schrödinger flow of maps into the Grassmannian Gk,m (15) (see
below), where I = Im denotes the m × m unit matrix and Sn is of the form

U−1
n σ3Un (12)

with Un being an m × m unitary matrix and σ3 =
(
Ik 0
0 −Im−k

)
. When k = 1 and

m = 2, i.e. Gk,m = CP 1 = S2, equation (11) reduces to the DHF (3). We usually add
the boundary condition Sn → σ3 as n → ∞ in solving this equation. Now we shall put aside
the cumbersome but straightforward calculations and present the final results. Equation (11)
permits the following Lax pair:

ψn+1 = L̃nψn dψn/dt = M̃nψn (13)

with L̃n = z+z−1

2 I + z−z−1

2 Sn and M̃n = i2(1 − z2+z−2

2 )(I + SnSn−1)
−1Sn + i(z− z−1)I − i(z2 −

z−2)(I + SnSn−1)
−1. After the substitution z → 1 + λ�x, �x → 0, t�x2 → t , n�x = x

(fixed), Sn → S and ψn → ψ , the continuous limit of (13) is

ψx = L̃ψ ψt = M̃ψ (14)

with L̃ = λS, M̃ = −i2λ2S + iλSxS and S satisfying S2 = I . The integrability condition
of (14) reads

St = 1

2i
[S, Sxx] (15)

which is equivalent to the Schrödinger flow of maps into the Grassmannian Gk,m displayed
in [2]

γt = [γ, γxx] γ ∈ Gk,m (16)

where Gk,m is regarded as the adjoint U(m)-orbit at a =
( i

2Ik 0
0 − i

2Im−k

)
in the Lie algebra

u(m) of U(m), i.e. Gk,m = Ad(U(m))a = {U−1aU |U ∈ U(m)}.

3. Gauge equivalence

In this section, by using the Lax pairs displayed in the preceding section, we shall show that
there is a gauge transformation between (a class of solutions to) the DCMNLSE (4) and the
discrete equation (11) of the Schrödinger flow of maps into Gk,m, and the continuous limit
of the realizing gauge transformation is just a classical limit between the MNLSE (1) and the
Schrödinger flow of maps into the Grassmannian Gk,m (15).

First we suppose {Sn} is of the form (12) and fulfils the discrete equation (11) of the
Schrödinger flow of maps into Gk,m. We then choose a sequence of m × m-matrices {Gn(t)}
such that σ3 = GnSnG

−1
n and ∀n

Gn+1G
−1
n =

(
Ik rn(t)

−qn(t) Im−k

)
(17)

for some (m − k) × k complex matrix qn(t) and k × (m − k) complex matrix rn(t). In fact,
because of (12), there exists a sequence of unitary matrices {Un} such that Sn = U ∗

n σ3Un. It is
obvious that the general solutions to σ3 = GnSnG

−1
n are of the form

Gn = diag(An, Bn)Un (18)
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where An is a non-singular k × k matrix and {Bn} is a non-singular (m− k)× (m− k) matrix.
Now we first fix A0 and B0, which will be restricted in remark 2 below, and then come to prove
that, ∀n �= 0, An and Bn can be chosen progressively such that (17) holds for some qn and rn.
Substituting (18) into (17), we obtain(

A−1
n+1 0
0 B−1

n+1

) (
Ik rn

−qn Im−k

) (
An 0
0 Bn

)
= Un+1U

∗
n . (19)

If we denote Un by

(
U 1

n U 2
n

U 3
n U 4

n

)
, then we see that (19) can be rewritten as

A−1
n+1An = U 1

n+1U
1
n

∗
+ U 2

n+1U
2
n

∗
(20)

B−1
n+1Bn = U 3

n+1U
3
n

∗
+ U 4

n+1U
4
n

∗
(21)

rn = Anp
∗
nB

−1
n (22)

qn = BnpnA
−1
n (23)

pn = (U 3
n+1U

3
n

∗
+ U 4

n+1U
4
n

∗
)−1(U 3

n+1U
1
n

∗
+ U 4

n+1U
2
n

∗
) (24)

where the inversibility of U 3
n+1U

3
n

∗
+U 4

n+1U
4
n

∗
is due to the fact that I +Sn+1Sn (= U ∗

n+1(Un+1U
∗
n

+σ3Un+1U
∗
n σ3)Un) is inversible in equation (11). Hence, we may choose An and Bn for n �= 0

progessively by relations (20) and (21) and choose rn and qn by (22) and (23). This proves the
existence of Gn. Now, we put

LG
n (z) = Gn+1L̃n(z)G

−1
n =

(
zIk rnz

−1

−qnz z−1Im−k

)
MG

n (z) = dGn/dt G−1
n + GnM̃n(z)G

−1
n

= dGn/dt G−1
n + i

(
(1 − z2 + z − z−1)Ik rn−1(z

−2 − 1)
qn−1(z

2 − 1) (−1 + z−2 + z − z−1)Im−k

)

where L̃n(z) and M̃n(z) are the coefficients in the Lax pair (13). Since L̃n and M̃n satisfy the
integrability condition of (13), we have

dLG
n

dt
+ LG

n M
G
n − MG

n+1L
G
n = 0. (25)

If we let dGn

dt G
−1
n = i

(
αn βn

γn πn

)
, where αn, βn, γn and πn are temporally arbitrary, then the

vanishing of the diagonal part in (25) leads to

βn = −rn + rn−1 γn = −qn + qn−1

αn + rnqn−1 = αn+1 + rn+1qn πn − qnrn−1 = πn+1 − qn+1rn ∀n.
In other words, from the above relations we have

dGn

dt
G−1

n = i

( −rnqn−1 −rn + rn−1

−qn + qn−1 qnrn−1

)
+ i

(
τ(t) 0

0 σ(t)

)
(26)

for some k × k matrix τ(t) and (m− k)× (m− k) matrix σ(t) which do not depend on n, but
may depend on A0 and B0. Note that the above restrictions on Gn allow an arbitrariness in Gn

of the form

Gn →
(
P(t) 0

0 Q(t)

)
Gn (27)

for some non-singular matrices P(t) and Q(t) depending only on t . In fact, denoting

G̃n =
(
P(t) 0

0 Q(t)

)
Gn under this transformation, we then have G̃n+1G̃

−1
n =

(
1 r̃n

−q̃n 1

)
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with q̃n = Q(t)qnP (t)−1 and r̃n = P(t)rnQ(t)−1. Meanwhile, a straightforward calculation
shows

dG̃n

dt
G̃−1

n = i

( −r̃nq̃n−1 −r̃n + r̃n−1

−q̃n + q̃n−1 q̃nr̃n−1

)
+

(
PtP

−1 + P iτP−1 0
0 QtQ

−1 + QiσQ−1

)
.

If we require P(t) and Q(t) to satisfy

dP

dt
(t) = −iP(t)τ (t)

dQ

dt
(t) = −iQ(t)σ (t)

then Gn can be modified so that for the new Gn the second term on the right of (26) vanishes.
This implies that MG

n (z) is exactly the second coefficient in (6) and {(qn, rn)} satisfies the
DCMNLSE (4).

Remark 1. All the couples of sequences {(qn, rn)}, being given by (22) and (23) for some
sequences of (m − k) × k-matrices {pn}, unitary m × m-matrices {Un}, non-singular k × k-
matrices {An} and non-singular (m− k)× (m− k)-matrices {Bn} with relations (20), (21) and
(24), such that

Gn =
(
An 0
0 Bn

)
Un (28)

solves

Gn+1 =
(

Ik rn
−qn Im−k

)
Gn

dGn

dt
= i

( −rnqn−1 −rn + rn−1

−qn + qn−1 qnrn−1

)
Gn

(29)

consist of a class of solutions to the DCMNLSE (4). When k = 1 and m = 2 (i.e. in the case
of G1,2 = S2), as displayed in [19], we get An = B̄n and therefore rn = q∗

n from (22) and
(23). But when k � 2 or m − k � 2, as will be illustrated by an example in the next section,
it is impossible to get rn = q∗

n in general. So the DCMNLSE appears very naturally when
exploring the gauge equivalent structure of the discrete equation of the Schrödinger flow of
maps into the Grassmannian in this case.

Remark 2. At the end of this section, we shall show that the continuous limits of An and Bn

are unitary matrices, which is equivalent to saying that the continuous limits of A0 and B0 (i.e.
lim�x→0 A0 and lim�x→0 B0) are unitary matrices. Therefore we will require the sequences
{An} and {Bn} with the restriction that the continuous limits of A0 and B0 are unitary matrices
and hence r = q∗ after taking the continuous limit from (22) and (23). If {(qn, rn)} is a
couple of the sequences given in remark 1 with the above restriction, then, after taking the
continuous limit in both sides of (26), we see that the two t-depending functions iτ and iσ have
their continuous limits τ0 and σ0 (i.e. iτ → �x2τ0 and iσ → �x2σ0) in u(k) and u(m − k),
respectively, where u(k) is the Lie algebra of the unitary group of degree k, etc. Thus the
continuous limits of the corresponding P and Q which appeared in (27) are automatically
unitary matrices by the equations they satisfy. This indicates that, under these circumstances,
the relation r = q∗ is still preserved by transformation (27) for {(qn, rn)}. Hence the above
restriction on A0 and B0 is very natural.

Next, we prove that the above process from the discrete equation (11) of the Schrödinger
flow of maps into Gk,m to the class of solutions (see remark 1) of the DCMNLSE (4) is
reversible. Suppose {(qn(t), rn(t))}, being given in remark 1, is a solution to the DCMNLSE
equation (4). The corresponding solution to Lax pair (6) is denoted by {φn(t, z)}. It is easy to
see from (29) that {Gn} is in fact a fundamental solution to (6) at z = 1.
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Now, we consider the following gauge transformation:

φn(t, z) = Gn(t)ψn(t, z) (30)

and come to prove that the above {ψn(t, z)} is a solution to Lax pair (13) of (11). In order to
do this, we put ψn+1 = L̃nψn and dψn/dt = M̃nψn for some L̃n and M̃n. Applying the first
equation of Lax pair (6), from (30) we have

L̃n = G−1
n+1LnGn. (31)

Then substituting Gn+1 =
(

Ik rn
−qn Im−k

)
Gn into (31), we obtain

L̃n = z + z−1

2
I +

z − z−1

2
G−1

n σ3Gn := z + z−1

2
I + i

z − z−1

2
Sn

where Sn = G−1
n σ3Gn with S2

n = I . In what follows, we have to show that Sn ∈ Gk,m, or in
other words, ∀n, Sn = U ∗

n σ3Un for some unitary matrix Un. In fact, ∀n we set

Un =
(
An 0
0 Bn

)−1

Gn

which is a unitary matrix from (28) in remark 1, and it is straightforward to obtain the fact that
Sn = G−1

n σ3Gn = U ∗
n σ3Un ∈ Gk,m.

Using the second Lax equation for φn, we have

M̃n = G−1
n MnGn − G−1dGn/dt = G−1

n (t)(Mn(t, z) − Mn(t, 1))Gn(t)

= i

(
1 − z2 + z−2

2

)
G−1

n−1σ3Gn + i(z − z−1)I − i
z2 − z−2

2
G−1

n−1Gn

= i2

(
1 − z2 + z−2

2

)
(I + SnSn−1)

−1Sn + i(z − z−1)I−i(z2 − z−2)(I+SnSn−1)
−1

where we have used the identity G−1
n−1Gn = 2(I + SnSn−1)

−1. From this we see that
the above L̃n and M̃n are exactly the same coefficients as in (13) for Sn being given by
Sn = G−1

n σ3Gn = U ∗
n σ3Un. Hence {ψn} is a solution to (13). This proves that {Sn} constructed

from the solution {(qn, rn)} of the DMNLSE (4) satisfies the discrete equation (11) of the
Schrödinger flow of maps into Gk,m. The proof of the gauge equivalence between the class
of solutions to the DCMNLSE (4) and the discrete equation (11) of the Schrödinger flow of
maps into Gk,m is complete.

Remark 3. It is straightforward to verify that the MNLSE (1) is gauge equivalent to
the Schrödinger flow of maps into the Grassmannian Gk,m (15) by the following gauge
transformation:

φ(x, t, λ) = G(x, t)ψ(x, t, λ) (32)

where G(x, t) is a fundamental solution to (8) with r = q∗ at λ = 0, and φ(x, t, λ) and
ψ(x, t, λ) are solutions to (8) with r = q∗ and (14) at λ, respectively. However, we would
like to point out that this gauge transformation is somewhat different from the one employed
in [2].

Since the continuous limits of Lax pairs (6) and (13) are exactly the classical ones (8)
and (14), respectively, and r = q∗ from remark 2, it is easy to see that the continuous
limit of the gauge transformation (30) between the class of solutions given in remark 1 to
the DCMNLSE (4) and the discrete equation (11) of the Schrödinger flow of maps into the
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Grassmannian is just a classical gauge transformation (32) between the MNLSE (1) and the
Schrödinger flow of maps into the Grassmannian Gk,m (15).

What remains is to show the conclusion mentioned in remark 2. In fact, noting that the
continuous limit of unitary sequence {Un} is again a unitary matrix U , i.e. Un → U , and

combining this with (24), we see that pn → p�x for the p with

(
0 p∗

−p 0

)
− UxU

∗ being

a diagonal matrix. Here we would like to point out that UxU
∗ ∈ u(m) and is of the form(

S1 p∗

−p S2

)
, for some S1 ∈ u(k) and S2 ∈ u(m − k). It is obvious that the continuous limit

G of Gn is G =
(
A 0
0 B

)
U , where the non-singular matrix A (resp. B) is the continuous

limit of An (resp. Bn). As shown in section 2, we see from (22) and (23) that G satisfies

Gx =
(

0 Ap∗B−1

−BpA−1 0

)
G and hence(

A 0
0 B

)
x

=
(
A 0
0 B

) [(
0 p∗

−p 0

)
− UxU

∗
]
.

This implies that A (resp. B) satisfies Ax = −AS1 (resp. Bx = −BS2), where S1 ∈ u(k) (resp.
S2 ∈ u(m − k)) as mentioned above. It is easy to see the restriction that the continuous limits
of A0 and B0 (i.e. lim�x→0 A0, etc) are unitary matrices is equivalent to saying that A|x=0

and B|x=0 are unitary matrices. Therefore A and B have to be unitary under the restriction of
ordinary differential equations. This converse statement is clearly true.

4. Example

As an example to illustrate that, in the general case, rn �= q∗
n for a couple of the sequences

{(qn, rn)} given in remark 1, we take a trivial solution {Sn} to the discrete equation of the

Schrödinger flow of maps into the Grassmannian G2,3 = CP 2 of the form Sn =
(

1 0
0 sn

)
,

where {sn} is a 1-soliton solution to the DHF (with the boundary condition sn →
(

1 0
0 −1

)
as n → ∞) which is gauge equivalent to the 1-soliton solution ψn = exp[−i(2−2chw)t] shw

chnw
(w = �x being the discretization parameter; see [9]) of the DNLSE+. That is, there is a
solution {Fn} to

Fn+1 =
(

1 ψ̄n

−ψn 1

)
Fn

dFn/dt = i

( −ψ̄nψn−1 −ψ̄n + ψ̄n−1

−ψn + ψn−1 ψnψ̄n−1

)
Fn

(33)

and {sn} is given by the formula sn =
(

s1
n s2

n − is3
n

s2
n + is3

n −s1
n

)
= F−1

n σ3Fn. The explicit

expression of {sn} will be given below. For this solution {Sn}, it is easy to verify that, ∀n, the

following 3 × 3 matrix Gn =
(

1 a

0 Fn

)
satisfies

Gn+1 =
(

I2 rn
−qn 1

)
Gn dGn/dt = i

( −rnqn−1 −rn + rn−1

−qn + qn−1 qnrn−1

)
Gn

where a = (w, 0)Fn, rn =
(
wψ̄n

ψ̄n

)
and qn = (0, ψn). Obviously, {(qn, rn)} is a couple of the

sequences in remark 1 for k = 2 and m = 3 satisfying rn �= q∗
n , ∀n and r = q∗ after taking



A discretization of the matrix nonlinear Schrödinger equation 6777

the continuous limit.
We end this section by giving the explicit expression of the 1-soliton solution {sn} to the

DHF mentioned above. In fact, a solution to (33) is Fn =
(

fn gn
−ḡn f̄n

)
, where

fn = (c1
n cos(chw − 1)t + c2

n sin(chw − 1)t) exp[i(1 − chw)t]

gn = (b1
n cos(chw − 1)t + b2

n sin(chw − 1)t) exp[i(1 − chw)t]

in which c1
n = Re1n−1

j=0(1 + i shw/chjw)c1
0 − Im 1n−1

j=0(1 + i shw/chjw)b̄1
0, b1

n = Re1n−1
j=0(1 +

i shw/chjw)b1
0 + Im 1n−1

j=0(1 + i shw/chjw)c̄1
0, c2

n = −i(c1
nRn + b̄1

nLn)/(chw − 1), b2
n =

i(c̄1
nLn − b1

nRn)/(chw − 1), and Rn = 1 − chw + sh2w/(chnw ch(n − 1)w), Ln =
−shw/chnw+ shw/ch(n−1)w. In order to guarantee that sn satisfies the boundary condition,
equivalently, gn → ∞ as n → ∞, we choose c1

0 and b1
0 such that b1

∞ = limn→∞ b1
n = 0. For

example, c1
0 = Re1∞

j=0(1 + i shw/chjw) and b1
0 = −Im 1∞

j=0(1 + i shw/chjw). Then the
corresponding 1-soliton solution to the DHF is given by s1

n = (|fn|2 − |gn|2)/(|fn|2 + |gn|2),
s2
n = (ḡnfn + gnf̄n)/(|fn|2 + |gn|2) and s3

n = (ḡnfn − gnf̄n)/i(|fn|2 + |gn|2).

5. Conclusion and remarks

In this paper, we have revealed that the class of solutions given in remark 1 to the DCMNLSE (4)
(for k � 2 orm−k � 2) is gauge equivalent to the discrete equation (11) of the Schrödinger flow
of maps into the GrassmannianGk,m and have demonstrated further that the continuous limit of
the realizing gauge transformation is exactly a classical limit between the MNLSE (1) and the
Schrödinger flow of maps into the GrassmannianGk,m (15). In other words, from the viewpoint
of gauge equivalence, the class of solutions to the DCMNLSE (4) is a correct discretization
of the MNLSE (1). However, we have not been able to find a non-trivial example to illustrate
that the discrete equation (11) of the Schrödinger flow of maps into the Grassmannian is not,
in general, gauge equivalent to the DMNLSE (2), though we believe that, unlike the fact
displayed in [19] for the NLSE, this is the case. Anyway, the obtained result suggests that
there might exist an interesting and intriguing geometric relationship between the CMNLSE
(resp. DCMNLSE) and the MNLSE (resp. DMNLSE). A better understanding of this will be
left for future study.
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